
Predictive Music Shuffling Algorithm
 Prateek Singh, Aditya Batheja, Abhijit Chowdhury

CSE Department,
Guru Gobind Singh Indraprastha University

Sector-16C, Dwarka, New Delhi, Delhi 110078, India

Abstract—	 Shuffling is a method employed to randomize a
data set to ensure an element of chance when elements from
the data set are selected at random. Literature has established
that computers are capable of generating an ideal shuffle; a
bias-free random permutation of cards. Shuffling is also
widely used in music players as a separate feature allowing
listeners to randomize their playlists. However, an ideal or
bias-free shuffle may prove to be counter-intuitive in this case
as even in randomized selections, listeners tend to have
inclinations towards a certain type of songs depending on their
mood. In this paper, we propose a predictive shuffling
algorithm that can provide automated dynamic based
shuffling according to the user's preferences. This
shuffling takes into account various parameters like
genre, artist, play duration and release date and selects
the next song on that basis.

Keywords—Music Shuffling, Predictive Music Shuffling

I. INTRODUCTION
Shuffling or randomization is a sequencing of random
variables describing a process whose outcomes do not
follow a deterministic pattern, but follow an evolution
described by probability distributions. A shuffling process
looks to produce a random permutation of objects. This
process, however, may not be completely haphazard.
Randomization, although, looks to make a completely
random selection but in certain cases, it needs to make more
intelligent selections.

Randomization finds a lot of application in random
experiments, gambling, song-shuffling, statistics and survey
sampling. Most music players uses a minimal
randomization algorithm known as Fisher-Yates algorithm.
Fisher–Yates shuffling is similar to randomly picking
numbered tickets out of a hat without replacement until
there are none left. However, this does not account for any
intuitive approach. Owing to the ever-increasing
consumption of music and its varied availability, there is a
dire need of a shuffling algorithm which works based on
user's preferences.

The proposed approach works on the ID3 tags of a sound
track. ID3 tags include artist, album, genre, song release
date. Based on these, 'nearness' factor of all the songs in the
music library are calculated respective to the song first
played by the user. The higher the value of the nearness
factor, higher are its chances of being played next.

II. COUNTER-INUITIVNESS OF NORMAL

SHUFFLING
 Consider a music library consisting of almost equals
numbers of sound tracks pertaining to three different
genres. Let there be 10 tracks of genre A, 11 tracks of genre
B and 11 tracks of genre C. A simple unbiased random
algorithm, when employed, would result in randomized
data set such as one below:-
AACBBCBACABBCCACCCCABBACBACABABB
There are two shortcomings with this approach.
1. In the middle of the dataset, there are four tracks of

genre C simultaneously placed. In case, the user does
not want to listen to this particular genre, he has no
choice except for skipping each of these tracks one by
one. Thus, this approach is static.

2. Otherwise in the dataset, the player shifts from one
genre to another without any relevance to user's
activity. There is no way to know what genre the user
wants to listen to more at this time.

Thus, the only shuffled patterns observed by the user using
this approach are due to confirmation bias.

2.1 Predictive Shuffling- Nearness Factor
This approach requires forming links between different
songs in the library. The mechanism used for forming such
associations is called 'Nearness' factor. It is calculated based
on the similarity in ID3 tags of the songs in the library to
the song being played currently. ID3 tags consists of

 Artist
 Album
 Genre
 Release Date(whether same decade or not)

The nearness factor is assigned based on 1 or 2-point
increment to the default value of 0 corresponding to each
matched tag of the two songs. The songs with a high value
of nearness factor are played first. The nearness factor is
calculated based on the weight generator algorithm. The
time for which the current song is played also influences
whether the ones similar to this would be played next or
not. Following algorithm is used to calculate the nearness
factor.
Weight_Gen(currently_playing)

1. song.weight=0
2. If currently_playing.artist == song.artist
3. song.weight +=1
4. If currently_playing.album == song.album
5. song.weight +=1

Prateek Singh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4159-4162

www.ijcsit.com 4159

6. If currently_playing.genre == song.genre
7. song.weight +=2
8. If currently_playing.decade == song.decade
9. song.weight +=1

2.2 Predictive Shuffliing-Interleaving Nearness factor
with played duration
The algorithm depends on the first song being chosen by
the user in order to calculate the 'nearness' of other songs to
the chosen song. The duration for which the current track is
played is directly related to its likability by the user. If the
first song is changed immediately, another random song is
played. If the song is played for a minimum time say t1,
weight generator is called. A point in duration of the song is
referred to as t2. t2 can be referred to as the time for which
if the song is played succinctly established that it is liked by
the user. If the duration crosses t2 and user requests a new
song, the next song would be the one most similar to the
song played.
If the duration is less than t2, there is a logic in place to
assure that the user does not listen to the same kind of
songs. The user can request new songs repeatedly and if the
number of requests exceed the weight of the song last
played, the algorithm plays the next song with a weight
one less than the last played weight. This means that the
song is little less similar to the earlier songs. For instance,
such a song can be of the same genre, album and decade but
a different artist, or a same artist, genre and decade but a
different album. This allows the listener to listen to varied
tracks. The algorithm recursively moves forward.

Function Main(song_from_user)
t - time when user made the song change request
t1 - time limit for immediate change
t2 - time limit for next change
current_song = the song being currently played
song_to_play = song that will be played next

1. If (change request is made at t<t1)
song_to_play = Random_Play()

2. Else
3. Weight_Gen(current_song)
4. End-if

If change request is made at t1<t<t2
5. song_to_play =Average_Play();
6. Else
7. If change request is made at t>t2 :

song_to_play =Priority_Play();
8. End-if
9. End-if

Function Average_Play()
play_next_song = number of time next was pressed for
current weight songs
current_weight = weight of currently selected song
songs_in currentweightpool = number of songs in current
weight pool
1.play_next_song++;
2. If (play_next_song < current_weight)

3. If (songs_in_currenweightpool > 0)
4. Pool_Play(current_weight);
5. Else
6.current_weight--;
7.play_next_song=0;
8. If (current_weight equals 0)
9. Random_Play();
10.Else
11. If (songs_in_currenweightpool > 0)
12. Pool_play(current_weight);
13. Else
14. Average_Play();
15. End-if
16. End-if
17. End-if
18. Else
19. current_weight--;
20. play_next_song=0;
21. Pool_Play(current_weight-1);
22. If(current_weight equals 0)
23. Main(last_song_played);
24. Else
25. If (last_song_played-for<complete_duration)
26. Average_Play();
27. End-if
28. End-if
29. End-if

Function Random_Song()
1.Return any song from song_array();

Function Priority_Play()
1.If (play_next_song < current_weight)
2. If (songs_in_currenweightpool > 0)
3. Pool_Play(current_weight);
4. Else
5. current_weight--;
6. play_next_song=0;
7. If (current_weight equals 0)
8. Random_Play();
9.Else
10. If (songs_in_currentweightpool > 0)
11. Pool_play(current_weight);
12. Else;
13. Ammplay();
14. End-if
15. End-if
16. End-if
17. End-if

Function Pool_Play(int passed_weight)
1.song_array[] = array containing the complete user

collection
2. Return any song from song_array[] whose

weight=passed.weight;

Prateek Singh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4159-4162

www.ijcsit.com 4160

Fig. 1 Flow Chart Of Predictive Shuffling Algorithm

III. RESULTS AND CONCLUSIONS
 A predictive shuffling algorithm is proposed for an
individual's music library. The algorithm tends to iterate
through the collection based on the user's likings of the
song being currently played. This is established through a
concept of Nearness factor which links all the songs to the
current song based on the comparison of the ID3 tags.
Further, it is realized that the time for which any song is
played by the user is also an indication how well it is
deemed by the user. Incorporation of the time along with
the nearness factor renders a unique approach to the
shuffling of the songs in the library.

IV. FUTURE SCOPE
As per the current proposition of the algorithm, the time
thresholds t1 and t2 are indicative of how much a song is
liked by listener. These values should be quantified in a
unique manner for every song track. The weight assigned to
the track based on ID3 tracks can be made for dynamic.
This can be achieved using Machine Learning and Fuzzy
logic in order to make the algorithm more qualitative and
data-driven. Another important factor can be the ability of
the user to like or dislike a given track. This can then be
incorporated into the algorithm to inlfuence the song's
weight.

Prateek Singh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4159-4162

www.ijcsit.com 4161

REFERENCES
[1] McFee, Brian (2012), Machine learning approaches to music

similarity, Retrieved from http://escholarship.org/uc/item/8s90q67r
[2] Music Genome Project http://www.pandora.com/about/mgp
[3] Fisher, Ronald A., Yates, Frank (1948) , Statistical tables for

biological, agricultural and medical research (3rd ed.)

Prateek Singh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4159-4162

www.ijcsit.com 4162

